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We w i s h  to apply formal v e r i f i c a t i o n  to program whicfr use real n u h e r  
arithmetic operations (hereinafter r e f e r r e d  to as mathematical 
F o m l  verificatim of a program P consis ts  of (1 ) c r e a t i n g  a ma e m  leal 
d e l  of P, ( 2 )  stating the desired proper t ies  of P in a formal l o g i c a l  
language, and ( 3 )  proving that the mathematical d e l  has  the desired 
wowties of step 2 using a formal proof calculus.  If the model f a i t h f u l l y  
embodies P, and the proper t ies  of s t e p  2 are a correct formalizat ion of the 
desired properties of P, the formal v e r i f i c a t i o n  provides a high degree of 
assurance that P is correct. 

EFF' - 

There are two p r i n c i p a l  d i f f i c u l t i e s  i n  formally ver i fy ing  mthematical 
programs: 

1. Hcw to model inexac t  machine arithmetic operations 

2 .  HOW to state the desired proper t ies  of 
the fact 
square root program does not compute the exact square root) 

mathematical programs i n  View of 
that such programs i n  general deliver inexact  r e s u l t s  (e.g. a 

1 W e l i n g  Machine Arithmetic 

Our s t a r t i n g  assumption is t h a t  machine arithmetic operations can be 
represented as the ideal real number operations followed by rourding. The 
opera t ion  of rounding is modeled by a cropping funct ion,  CR, f r a n  the real 
numbers (denoted by E) to E. The range of CR represents  the machine real 
numbers, sanetimes called the d e l  numbers. This w a s  t h e  approach taken i n  
[ l ] ,  [21, ard [31 and is m n s i s t e n t  with the proposed I= standard for 
f l o a t i n g  poin t  arithmetic [ 4 1 .  

0 

We will 
"the cmpping funct ion axicms": 

assme CR satisfies the following axians, h e r e i n a f t e r  r e f e r r e d  to as 

- Axiom 1: The range of Qi is f i n i t e .  

1 .  
i n  

2. 
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- Axiom 3: ( R ( 0 )  = 0 

- Axian 4: [x  <= y <= 2 & (R(x) = cR(z)l ->  a R ( x )  = CR(y) 

The f i r s t  axian expresses the f a c t  that there are only f i n i t e l y  many machine 
-1 numbers. The M axian  says  that the r e s u l t  of a rounding opera t ion  
(i.e. a machine real nmber )  is unaffected by f u r t h e r  murdhg. Note that the 
second aian impl ies  that t h e  range of (R and the set of f i x e d  po in t s  of CR 
axe the same. The third axian  says  that 0 is a f ixed  p i n t  of CR, i.e. that 
0 is a machine real number. The fou r th  axian says  that i f  x and z round to 
the s a m  nur33er a d  y is between x and z then y r o d s  'CD the sam nunber as x 
and Z.  As usual  when stating axioms i n  f i r s t  order logic t h e r e  are implicit 
un ive r sa l  quant. if iers i n  f r o n t  of the formulas displayed as Axiorrs 2 through 
4. 

The cropping funct ion  axians are cons i s t en t  w i t h  the four  rounding nodes which 
the proposed IEEE Standard would r equ i r e  to be supported, namely r o u d i n g  to 
the nea res t  m c h i n e  real number, rounding towards 0,  rounding towards p lus  
i n f i n i t y  ard r o u d i n g  towards minus They are also consistent w i t h  
mumling away f m  zero, a d e  which is not mentioned i n  t h e  proposed IEEE 
Stardard. 

i n f i n i t y .  

0 We can d e r i v e  sane usefu l  oonsequences of the above axians: 

1.  a is mnotone,  i.e. x <=  y ->  a ( x )  < =  cR(y)  

2. There is no rnachine real between x and CR(x). 

Note tha t  the second s t a t emen t  does not imply that there is no machine rea1 
that is closer to x than (3R(x). Again, we do not wish to requ i r e  t h i s  because 
the proposed IEEE Standard would requi re  o the r  rounding mdes than rounding to 
the nea res t  machine real. 

2 Modeling Program Execution 

W e  mst embed the above ideas about d e l i n g  machine arithmetic i n t o  a l a r g e r  
node1 of program execution. We base cur formal d e l  of execution on a simple 
inform1 p i c t u r e  of program execution. We think of t h e  program as executing a 
s t e p  a t  a time. A t  each poin t  in time, the program (cx the machine it is 
running on)  is completely described by ( 1  1 t he  "point" i n  t h e  program w h e r e  
c o n t r o l  c u r r e n t l y  is, a d  ( 2 )  the values  of each of the program va r i ab le s .  
The program d e  determines the r e l a t i o n s h i p  between the va lues  of v a r i a b l e s  
a d  thc p i n t  of ccntrol before a given s t e p  ard a f t e r  t h a t  step. We w i l l  
assume, for the sake of s impl i c i ty ,  t h a t  a l l  va r i ab le s  have a def ined  va lue  
i n i t i a l l y ,  ht this value w i l l  be unspecified by the execut ion d e l .  I n  
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additicn, we w i l l  assume that the r e s u l t  of a t tempting to perfom a 
o a n p u b t i o n  which is undefined (e.g. d i v i s i o n  by 0) has a completely 
unspecified e f f e c t .  Tb use the d e l ,  it w i l l  usua l ly  be necessary to Prove 
that rn undefined canputations are attempted, and that the values  of program 
variables are no t  referenced before they are assigned to. 

b 
How do we represent  t h e  above informal p i c tu re  m t h e m t i c a l l y ?  We w i l l  
r ep resen t  "time" by the non-negative in t ege r s  (which we w i l l  hereinafter refer 
to as the natural numbers). The "points" where con t ro l  can r e s i d e  w i l l  be 
=presenteZSii$y by a f i n i t e  set. The data types of program v a r i a b l e s  other 
than real number va r i ab le s  w i l l  be represented by the c o r r e s p r d i n g  
mathematical objects, e.g. the data type of in t ege r s  w i l l  be represented as 
the mathematical integers. The real data type w i l l  be represented by the  
range of CR. 

The execut ion of t he  program w i l l  be represented by a c o l l e c t i o n  of func t ions  
g iv ing  the h i s to ry  of the  flaw of con t ro l  i n  the program and the h i s t o r i e s  of 
the values  of t h e  program var iab les .  Thus, t he re  w i l l  be a func t ion  from time 
(i.e. the na tu ra l  numbers) i n t o  the set of con t ro l  p i n t s  (which we w i l l  
denote by PC), and f o r  each program va r i ab le  v ,  a funct ion frcm time i n t o  the 
data type of v. 

The func t ions  represent ing  histories w i l l  be required to s a t i s f y  c e r t a i n  
carditions derived fran the program. For example, i f  X ,  Y and 2 are in t ege r  
program va r i ab le s ,  FX, FY and FZ the corresponding h i s to ry  func t ions ,  and a t  a 
certain t i m e  t m n t r o l  is a t  a p rq ram ins t ruc t ion  

X : = Y + Z  

then the funct ions must s a t i s f y  t h e  c r t d i t i o n  

FX(t + 1 )  = F Y ( t )  + FZ(t) 

For real var i ab le s ,  a l l  operations are the i d e a l  real opera t ions  followed by 
cropping. For example, if A,  B and C are real program va r i ab le s ,  FA,  FB and 
Fc t he  correspondiq h i s to ry  funct ions,  4 a t  a c e r t a i n  t i m e  t cont ro l  is a t  
a statement 

A : = B + C  

then the func t ions  mst s a t i s f y  t h e  condi t ion 
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3 Error K w n i t d e  i n  the We1 

The cropping func t ion  axians capture  c e r t a i n  q u a l i t a t i v e  properties of CR. 
They are not enrugh to do use fu l  v e r i f i c a t i o n ,  however, because they 
MthhJabout the s i z e o f  the error introduced by CR. For example, the 
croppirrg function axim are s a t i s f i e d  by the z e m  funct icn .  Thus, any 
Program W h i c h  we could v e r i f y  using only the cropping func t ion  axians would 
have to be carrect even when running on a machine whi& used the zero func t ion  
as its cropping function. Very few usefu l  mathematical p rogram would be 
correct i n  any sense on such a machine, and thus  wq could not  be able to 
v e r i f y  such programs s o l e l y  on t h e  b a s i s  of the cropping func t ion  aim. We 
need saw additional axians on the  s i z e  of t he  error introduced by CR. 

It is not clear, however, w h a t  kind of axioms to add. I f  we add axioms which 
give s p e c i f i c  numerical h r d s  on t h e  s i z e  of the  error i n  a c e r t a i n  range, 
then  any v e r i f i c a t i o n  w e  do  w i l l  only apply to machines that meet these 
numerical ccndi t ions .  For a machine t h a t  d i d  not  meet the corditions, any 
v e r i f i c a t i o n  done on the  b a s i s  of the  condi t ions  would be i n v a l i d ,  d e s p i t e  t h e  
f a c t  that m y  programs might still run c o r r e c t l y  on the machine. On the 
other hand, scme m c h i n e s  which met the conditions would probably a c t u a l l y  
meet much mre demadirq conditions.  There could be programs which run 
o o r r e c t l y  on such machines which we cannot prove correct because cur axioms do 
not r e f l e c t  the high degree of accuracy i n  t h e  mchine .  

One s o l u t i o n  to t h i s  d i l e m  would be to add non-specific numerical b u n d s  on 
the error. I n  o the r  wards, add a symbol ( s a y ,  'le'') and add an axian  l i k e  ' ' the 
percentage error b e t m n  x and CR(x) is always less than e." One could then 
v e r i f y  s ta terrents  a b u t  the accuracy of mathemt ica l  programs i n  t e r n  of e. 
For example, if P were a program to mnpute  square rmts, one might t r y  to  
v e r i f y  a staierrrent l i k e  "the percentage error between P(x) and the square root 
of x is 5*e. If one then wanted a c e r t a i n  degree of accuracy fm P, one 
could so lve  f o r  the degree of accuracy i n  CR that would be necessary to 
achieve the des i r ed  accuracy f r an  P. 

There are s e v e r a l  problems with this apprcach. F i r s t  of a l l ,  i t  id v q  
cos t ly .  the problem of 
genera t ing  and proving statements of t h e  kind mentioned above i n  a mechanical 
proof system is i n t r a c t a b l e  i n  terms of both the a m u n t  of m p u t a t i o n a l  mer 
and t h e  a m u n t  of human i n p u t  required. Secord, i n  some s i t u a t i o n s  it f o r c e s  
u s  to do an analysis t h a t  is more d e t a i l e d  than necessary. Many errors i n  
mathematical programs occur a t  a m c h  lower l e v e l  of numerical oomplexity. 
For example, ZBFU!" is a Fortran subroutine f r a n  the  IMSL l i b r a r y  which is 
supposed to f i n d  a zero of a user-defined func t ion  F given a p a i r  of endpoints 
A d B such that t-he values  of F a t  A and B are of oppos i te  I t  does 
this by gradual ly  roving the endpoints inward, always making sure that the 
values of F a t  I n  the process of 
t h e  ccmputation, i t  genera tes  various pairs of real va lues  X and Y which it 
must test to see i f  F(X) and F(Y) are of omsite sign. I t  does so by 

With present technology i n  a u t m t i c  theorem proviry,  

sign. 

the  cu r ren t  endpoints are of opposite sign. 
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'* r m l t i p l y i r q  F(X) ard F(Y) together  and tes t ing  whether the r e s u l t  is negat ive 
or not. This is an inoorrect (not to mention i n e f f i c i e n t )  test, s i n c e  it j s  
possible to have F(X) axld F(Y) be snall n h r s  of opposite sign whose product 
is 
T h i s  muses to act as if F ( X )  and F ( Y )  are of the same s i g n ,  g iv ing  
i n c o r r e c t  r e s u l t s  i n  sane cases. TNS prograrrrning error is n o t  "numerical" i n  
M b t e ,  but is inherent  i n  the notion of inexact  (although "close'') 
canputa t ion. 

small  that underflow causes the machine to ocmpute 0 f o r  their prcduct. 

b 

What we would l ike  is a model of machine arithmetic which captures  t h e  idea of 
"close" but  inexact  computation without r e f e r r i n g  to s p e c i f i c  numerical 
Constants. I n  t h e  next  s e c t i o n  w e  present  such a nodel. The nodel is based 
on an alternate approach to real a n a l y s i s  called non-standard ana lys i s .  

4 Non-standard Analys is  

Calculus was developed i n  the eighteenth century bjsed on the not ion of 
i n f i n i t e s h l s .  These w e r e  p o s i t i v e  e n t i t i e s  dx smaller than any a c t u a l  
p o s i t i v e  real kut not  0. F'ur themre ,  they obeyed the laws of ordinary real 
arithmetic so t ha t  one could carry o u t  ordinary a l g e b r a i c  m i p l a t i o n s  l i k e  

y = xA2 

y + dy = (x + dX1-2 

(x + dX1-2 = xA2 + 2 * x * dx + (dX)^2 

dy = 2 * x * dx + (dxl-2 

dy/dx = 2 * x + dx 

I n  p a r t i c u l a r  the d e r i v a t i v e ,  dy/dx, was t h e  a c t u a l  q u o t i e n t  of two 
inf  i n i  t e s h l s  . 
Attempts i n  the nineteenth century to j u s t i f y  working w i t h  these extendo3 
reals were not  successful  and a d i f f e r e n t  approach and proof technique i n  
terms of limits was adopted instead (the so-mlled e p s i l o n / d e l t a  method.) 

I n  the e a r l y  60's log ic ians  shmxxl how to j u s t i f y  working w i t h  a c t u a l  
inf  i n i t e s i m a l s  using so-called %on-standard rrPdels of t h e  reals." These 
d e l s  are ordered a lgebra ic  s t r u c t u r e s  which have a l l  the same a l g e b r a i c  and 
ordering p r o p e r t i e s  of t h e  standard real numbers, and which conta in  the 
standard rei1 numbers, b u t  which also contain a d d i t i o n a l ,  non-standard 
nwnbers. Doing real a n a l y s i s  by means of such non-sk-ndard models is called 
non-starrdard ana lys i s .  
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4.1 Non-standard tbdels 

What exactly do w8 rean by a "non-standard d e l "  of sane mathematical q e c t  
l ike  tha real nunbers? F i r s t  of all, by "mathemtical owed" we W i l l  l u s t  
mean a non-empty set. Before we give a precise statement of "non-standard 
d e l ' '  we rmst discuss the notion of a first-der statement about a 
m a d t i c a l  object. 

SuFpose we have a mathemt ica l  object M. A term of fi is an a t p r e s s i o n  Which is 
of one of the folluwing forms: 

An element e of M 

-- 

1. 

2. f ( t l , . . . , t n )  where f is an n-ary funct ion frcm M i n t o  M and t l , . . . , t n  

Thus, if M is t h e  real numbers, then 0, 1 and 1 + exp(5) are terms on M ( w h e r e  
exp stands f a r  the "e- to- tk-x" f u n c t i m  a d  + is the u s u a l  additicn f u n c t i m ,  
written in f ix ) .  

are p r e v i a s l y  def ined terms of M. 

A first-order statement about M is a statement of one of the following forms: 

1 .  p ( t l , . . . , t n )  where p is an n-ary predicate on M 

2 .  A statement  b u i l t  up frun f i n i t e l y  many previously constructed 
f i r s t - o r d e r  staterrents by the use of logical connectives (e.g. "not", 
"and" , "or" , "if  -then-else" , etc. ) 

A statement  of the form "for a l l  x i n  M, . . . ' I  w h e r e  ... is a previously 
mnstructed f i r s t - o r d e r  staternent involving the variable x. 

4 .  A S b t e K e n t  of the form ''there exists x in M such that . . ." where . . . is 
a p r e v i m s l y  constructed first-order s t a t e n t  involving the variable 
X. 

3. 

The following are first-order statenw?t.s about t h e  real numbers: 

not (5 = 1 )  

f o r  a l l  x i n  the real numbers, f a r  a l l  y i n  the real numbers, 
x + y = y + x  

t h e r e  e x i s t s  x i n  the real numbers such t h a t  far a l l  y in the 
r a l  numbers, x*y = y 

t h e r e  exists x i n  the real numbers such that x*x = -1 
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Notice that the first four statements are true of the real nunbers ,  whereas 
the f o u r t h  is f a l s e  of the real numbers. A f i r s t - o r d e r  statement a b u t  M need 
not be a true s ta tmt  about M; it need merely be o f  a certain form. 

\ 

In  general, there w i l l  be sane f a c t s  about a g iven  mathematical object M which 
can be expressed as f i r s t -carder  s ta tenrents  and some which cannot. The f i r s t  
four examples above are f a c t s  a b u t  the real numbers which are expressible a s  
first-arder statements. A f a c t  a b u t  t h e  real nunbers  which is not  
expressible as a first-order s t a t emen t  is t h e  f a c t  that eve ry  non-empty set of  
real nunbers w h i c h  has an upper  b u n d  h a s  a least upper baund (this prope r ty  
is called c a n p l e t e n e s s ) .  This s t a t emen t  is n o t  a f i r s t - o r d e r  s t a t emen t  a s  
w r i t t e n  because  it r e f e r s  to sets of  reals rather than j u s t  i n d i v i d u a l  reals. 
Saw s ta tenrents  which r e f e r  to sets of e lements  or o t h e r  h igher -order  
Structures t u r n  o u t  to be e q u i v a l e n t  to f i r s t - o r d e r  For example, 
the statement "for eve ry  bounded set s of  real nunbers ,  t h e r e  is a real number 
x that is n o t  i n  S" is n o t  i n  t h e  form of  a f i r s t - o r d e r  s t a t emen t ,  b u t  it is  
e q u i v a l e n t  to the f i r s t - o r d e r  s t a t emen t  " f o r  a l l  x i n  the real numbers, there 
exists y i n  the r a l  numbers such t h a t  x < y." I t  can be shown that the 
c a n p l e t e n e s s  p r o p e r t y  is n o t  e q u i v a l e n t  to any f i r s t - o r d e r  s t a t e r r en t .  

We w i l l  n m  d e f i n e  w h a t  we  mean by a non-standard model. 
set M (e .g .  the set of real numbers). A non-standard d e l  of  M consists of :  

s t a t emen t s .  

Suppose we have sane 

1.  A set M' 

2 .  For each element  e of M, a corresponding element  e' of  M' 

3 .  For each n-ary f u n c t i o n  f r a n  M into M, a cor responding  n-ary f u n c t i o n  f ' 
from M' i n t o  M' 

4 .  For each  n-ary p r e d i c a t e  p on M, a corresponding n-ary  p r e d i c a t e  p '  on 
M' 

such t h a t  eve ry  f i r s t - o r d e r  s t a t emen t  which is t r u e  of  M is t r u e  of  14' when 
t h e  e lements ,  f u n c t i o n s  and p r e d i c a t e s  i n  t h e  s t a t m t  are i n t e r p r e t e d  as the 
corresponding e lements ,  functions and p r e d i c a t e s  of M ' .  For example, suppose 
R '  i s  a non-s ta rdard  d e l  of the reals. L e t  + '  deno te  the b ina ry  f u n c t i o n  on 
R '  c o r r e s p n d i n g  to the a d d i t i o n  func t ion  on  the reals. S ince  + is 
c m u t a t i v e ,  ard s i n c e  c m u t a t i v i t y  of + is e x p r e s s i b l e  as a f i r s t - o r d e r  
s t a t emen t  (see t h e  examples above ) ,  + '  must be m u t a t i v e  on R ' .  On t h e  o t h e r  
h a d ,  H' need n o t  have t h e  ccmpleteness  p rope r ty ,  and t h e r e  are non-s ta rdard  
&els of t h e  reals which a r e  no t  a m p l e t e .  

W e  w i l l  ca l l  t h e  e lements  of M '  which correspond to e lements  of M t h e  s t a r d a r d  
e lements  of  M'. W e  can i d e n t i f y  e lements  of  M w i th  their ocr responding  
e l emen t s  of M ' ,  and t h u s  speak of M as be ing  a subset of M ' .  Under this 
i d e n t i f i c a t i o n ,  f o r  each func t ion  f and each p r e d i c a t e  p on M, the 
cor responding  f '  and p' on M' is ex tends  f and p r e s p e c t i v e l y .  We w i l l  call a 
non-standard d e l  M' of a mathematical  object M a prom n o n - s t x d a r d  d e l  
of M i f  t h e r e  is an e lement  x of  M' which is n o t  i n  M. 

I t  can be s h m  ( w e  w i l l  n o t  g i v e  t h e  proof h e r e )  that evsAy i n f i n i t e  
mathematical object M has  a proper  non-standard d e l  MI. The same does n o t  
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hold for finite mthernatical objects. The reason is sinple. suppose  
M = {el ,...,en), a d  M' is a nm-standard d e l  o f  M. It is a true f i r s t - o r d e r  
statement about M that "for all x i n  M, or x P e 2  or .., or x = en'' 
(the ccnjunctian is finite).  Therefore, the statement " f o r  a l l  x i n  M', 
x - el or x - e 2 '  or ... or x = en"' is t r u e  of M' , b u t  this says tha t  the 
only elements of M' are the stardard elemnts. 

x = el 

4.2 Ncn-standard Wels of  the R a l s  

What does a proper non-standard d e l  of  t h e  reals look l i k e ?  I t  can be s h a m  
that  every proper n m - s w a r d  d e l  of  the reals amsists of  the stardard 
real numbers p l u s  the fo l lowing  three k inds  o f  non-standard numbers: 

1.  

2. 

3. 

I n f i n i t e s i m a l s .  These are n h r s  which are n o t  
than any standard non-zero real n-. 

2 hu t  which are smaller 

I n f i n i t e  NunberS . These are nunbers which are larger than any s t anda rd  
real number. There a ~ s  both p o s i t i v e  and n e g a t i v e  i n f i n i t e  numbers. 
Every prcpx non-stardard d e l  of  the reals must have i n f i n i t e  numbers 
as w e l l  as i n f i n i t e s i m a l  numbers i n  order to s a t i s f y  the a l g e b r a i c  
p rope r ty  that eve ry  non-zero number has  a m u l t i p l i c a t i v e  inverse. The 
m u l t i p l i c a t i v e  i n v e r s e  of a non-zero i n f i n i t e s i m a l  is an i n f i n i t e  
number. 

F i n i t e  Non-standard N u m b e r s .  These are numbers of t h e  form x + i where x 
is a non-zero standard real and i is an  i n f i n i t e s i n n l .  Such numbers are 
n e i t h e r  i n f i n i t e s i m a l  nor  i n f i n i t e ,  b u t  are n o t  standard e i t h e r .  

I n  t h e  o r i g i n a l  fo rmula t ion  of  c a l c u l u s ,  i n f i n i t e s i m a l s  were i n f o m l l y  
thought  of as non-zero real nunbers which w e r e  i n  sane s e n s e  " a r b i t r a r i l y  
small". Thus, t h e  n o t i o n  of i n f i n i t e s i m a l s  lerds i t s e l f  very w e l l  to modeling 
m n p u t a t i o n  which is inexac t ,  but whose inexac tness  can be tiken to be 
arbitrarily small. 

5 Non-standard Models of Execution 

We w i l l  i n c o r p o r a t e  the idea  of machine real operations which d i f f e r  
i n f i n i t e s i m a l l y  f r u n  the ideal o p e r a t i o n s  by us ing  non-s ta rdard  execu t ion  
d e l s .  A non-standard execu t ion  model w i l l  be a r e p r e s e n t a t i o n  of  program 
execu t ion  l i k e  that described i n  s e c t i o n  2 ,  b u t  w i t h  the standard mathematical 
objects r e p l a c e d  by non-standard objects. What e x a c t l y  does t h i s  mean? 

F i r s t ,  t ime w i l l  be rep resen ted  by a proper  non-standard d e l  of  t h e  n a t u r a l  
numbers. A proper non-standard d e l  of the n a t u r a l  numbers consists of the 
s b d a r d  n a t u r a l  nurrbers w i t h  i n f i n i t e  e l e n t s  added. Thus,  the h i s t o r y  
f u n c t i o n s  w i l l  be f u n c t i o n s  whose dana in  is a proper  non-standard d e l  o f  the 
n a t u r a l  numbers. 

- .  



Semnd, a l l  data types of program variables other than real v a r i a b l e s  w i l l  be 
represented by proper noti-standard d e l s  of the standard data types (if 
proper mn-standard d e l s  exist. ~ a r  example, the data type "kcohm" is 
finite and t h e r e f o r e  has no proper non-standard models. F i n i t e  data types  
w i l l  be represented i n  non-standard d e l s  of execution by the stardard 
of the data type). For example, the data type oonsisting of the p o s i t i v e  and 
negative integers must be represented by a proper non-starrlard d e l  of t h e  
integers (which j u s t  looks l i k e  the standard i n t e g e r s  w i t h  both p o s i t i v e  and 
negative i n f i n i t e  nLPnbers added). 

What a b u t  the data type of machine real numbers? I n  s e c t i o n  2 we obtained 
the machine real data type by chocsing a cropping funct ion on the ideal reals 
and taking its range. We cannot replace t h i s  type by a proper nrm-standard of 
i t s e l f ,  because by t h e  f i r s t  c roppim funct ion axiom, this set is f i n i t e  and 
so has no proper non-standard models. Suppose instead that we start with a 
prcper non-stardard d e l  of the reals R' and a funct ion CR f r a n  H' i n t o  R '  
s a t i s f y i n g  the cropping functior. axians and the additional axiom (called the 
''error axia-n") t h a t  f o r  a l l  f i n i t e  x i n  R ' ,  CR(x) - x is i n f i n i t e s b l .  This  
axian f o r m l i z e s  the statement  t h a t  on a l l  numbers that are not  "large" ( i . e .  
n o t  i n f i n i t e ) ,  the roundoff error is "small" (i.e. i n f i n i t e s i m a l ) .  We w i l l  
use the n o t a t i o n  ''x == y" to stand f o r  ''x - y is inf in i tes imal . "  

Unfortunately,  there are no such c r o w i n g  functions.  I n  urd= f o r  the error 
aXian  to be met, t h e  range of CR must be i n f i n i t e ,  which c o n t r a d i c t s  t h e  f irst  
cropping f u n c t i m  axiom. 

Hm can w e  reso lve  t h i s  inconsistency? There are d e f i n i t e  cases i n  which WE! 

make use of the  f i r s t  cropping funct ion axicm i n  v e r i f i c a t i a n ,  so w e  cannot 
simply -on it. What w e  w i l l  do instead is, r a t h e r  t h n  assuming t h a t  CR 
s a t i s f i e s  the f i r s t  cropping Lunction axiom, assure t h a t  s a t i s f i e s  all 
f i r s t - o r d e r  s ta tements  implied by the f i r s t  cropping funct-on axian. I t  can 
be s h a m  that t h e  f i r s t  cropping function axian is n o t  equivalent  to any 
f i r s t - o r d e r  statement,  so t h i s  is a t r u e  weakening of our  set of axioms. I n  
addi t ion ,  it can be shckn? that t h e  r e s u l t i n g  weaker set of axim is  
cons is ten t .  The f i r s t - o r d e r  consequences of the first cropping funct ion axiom 
w i l l  be mre than enough to v e r i f y  mst mathematical programs. I n  sumary, we 
w i l l  r epresent  t h e  m c h i n e  r e a l  data type i n  a nm-standard model of exerut ion 
a s  the  rarqe of a function CR f r a n  a rlon-standard d e l  of t h e  reals i n t o  
i t s e l f  such that CR satisfies cropping funct ion axioms 2 throuTh 4 ,  the error 
axion given &vel d a l l  f i r s t - o r d e r  statements implied by t h e  f irst  
cropping funct ion axicm. 

6 S p e c i f y i w  Matheratical  Proqrams 

tim do w e  state the proprx t ics  of m t h e w t i c a l  programs w e  want to prove'? 
s u p p o s e  w e  rcstrict oursclvcs  to m n s i d e r i r q  programs whose purpose is j u s t  to 
m p u t e  s c m r 3  real-valued funct ion.  If f is a real-values  funct ion of n 
arguments, and P is a prcyran to ccmpute f with parameters A1 ,...,. 4r-1, w e  can 
state t h e  s p e c i f i c a t i o n  of P i n  terms of the above formalism simply as !'for 
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a l l  inputs xl,...,xn, p ( x l , . . . ,  xn) == f (x1 ,  ..., Xn)" or, in s l i g h t l y  n-ore 
detail, "fur a l l  i npu t s  xl ,.. .,xn, i f  P is executed with the i n i t i a l  va lues  Of 
A1 t ,An beirrg XI,. . . ,xn respec t ive ly ,  then  P w i l l  eventua l ly  te rmina te  with 
output == f (XI ,..., xn) .'I ~n terns of the above f o m l i s m ,  P has terminated a t  
a time t if Wt) = stop w h e r e  "stop" is a con t ro l  p i n t  a t  the erd of t h e  
Program. 

7 A n E h n p  le Ver i f i ca t ion  

To i l l u s t r a t e  t he  use of the model, we w i l l  ve r i fy  a program which ccmputes 
the square root function by Newton's methcd. The proof w i l l  be infomlg We 
w i l l  denote the  ideal square root of a number x by root (x)  . 
Newton's methcd begins with an i n i t i a l  "guess" a t  the  square root. The guess 
is then r e f ined  by an i t s r a t i v e  process. A t  each s t e p ,  t h e  cu r ren t  guess g is 
replaced by ( g  + ( x / g ) ) / 2  (where x is the nunber whose square root is being 
ccmputed). The only facts abou t  Newton's methcd we w i l l  need to know f o r  the 
v e r i f i c a t i o n  are that i f  x is non-neqative and the  i n i t i a l  mess is biqqer - - -  
than root (x) ,  then: 

1. All succeeding guesses w i l l  be bigger than r a c ( x ) .  0 
2. Each new guess w i l l  be less than the previous guess. 

PlS WE now g ive  t)li! prcyrm.  
for machine real operations "doubled , e.g. machine real additim w i  1 be 
denoted by "++", to d i s t ingu i sh  machine operations fran i d e a l  opera t ions  
(which w i l l  be denoted by the usua l  "urdoubled" symbols). The value i n  R!SULT 
is output when the program terminates. 

We w i l l  a d T t  the convention of wr i t i ng  t h e  s 

The program is: 

RESULT := X ++ 1 

IF R.E!3ULT ** RESULT <=  X 

RESULT := (RESULT ++ (X//REULT))//L 
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Note that the conditions for leaving the  loop are not the  kind of oonditions 
me usually sees in  program of this type. The usual appraach to terminating 
i terat ive processes of this type involves e i t h e r  terminating when a ce r t a in  
degree of accuracy is reached, or w h e n  a ce r t a in  bound a the number Of 
iterations is reached, or both. I n  SQRT, the i t e r a t i o n  is t e r m i ~ t e d  when the  
iterative process in the machine ceases to act l i k e  the ideal Newton's method 
in one of the two ways mentioned above. 

We will ncw ver i fy  that i f  SQRT is executed with the in i t i a l  value of X 
non-negative a d  f i n i t e ,  then execution eventually terminates with 

RESULT == root(the i n i t i a l  value of x )  

W e  w i l l  perform the ver i f ica t ion  by establ ishing a series of lenmas, leading 
up to the  result we w a n t .  

LemM: i f  x an3 y are non-negative and x == y ,  then root (x)  == r o o t ( y ) .  

Proof: the proof breaks i n t o  2 cases: 

-1: x and y are infinitesimal.  The square of a n o n - i n f i n i t e s b l  number 
is non-infinitesimal, so root (x)  and root (y)  must therefore  be inf ini tes imal ,  
and thus the difference between them is also infinitesimal.  

- 

Case 2 :  either x or y is not infinitesimal.  Since the  two numbers d i f f e r  by 
an inf ini tes imal ,  i f  one is not inf ini tes imal  the  other is also not. Since 
the square of an inf ini tes imal  is inf ini tes imal ,  roo t (x)  ard root (y)  are also 
non-infinitesimal. By algebra,  w e  have 

x - y = ( root (x)  + r co t (y ) )* ( roo t (x )  - roo t (y ) )  

Since the le f t  side is inf ini tes imal  and the first fac tor  of the  r igh t  s ide  is 
not ,  the secord factor of the r igh t  s ide  rmst be infinitesimal.  

Lema 1:  Whenever (RESULT ++ (;1//REsuLT))//2 is ccmputed, E U L T  is not 0. 

Proof:  S u p m e  not. L e t  t be the earliest t im such t h a t  K ( t )  is a t  a 
statement Aere (RESULT ++ (X//WULT))//2 i s  m p u t e d  and RESULT = 0 a t  time 
t. Prior to t-, the prqram must have been executing normally, s ince  d iv is ion  
by 0 is the only except ioml mndi t ion  that can arise (we are ignoring 
exceptional cordi t ions such as STCRAGE_ERROR or overflcw which cannot be 
analyzed on the basis of the  prqrm's t e x t ) .  

The only points i n  the p r q r m  where (RESULT ++ (X//RESULT) ) / / 2  is m p u t e d  
a r e  i n  the second conditional i r s i d e  the loop and i n  the subsequent assignment 
statement. Since t is the earliest tine when a d ; / i s ion  by 0 is attempted, 
a d  program execution before t is nornul, we can conclude that: 
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1. 

2. 

Control a t  time t must be a t  the s e d  0 3 n d i t i O M l .  

Control a t  time t - 1 must be a t  the  f i r s t  conditional with RESULT = 0. 

3. X a t  time t - 1 nust be negative (by cmming function a i m  3 ,  if 
RESULT is 0 then  EUSULT ** RESULT is also  0). 

But X is a s s 4  to be m-nega t ive  i n i t i a l l y ,  and since no assignrrents to X 
can have taken place i n  the  course of n o m 1  execution pr ior  to t, X must k 
nm-negative a t  t im t - 1 ,  a contradiction. 

W e  can therefore  assune for the rest of the 
normally a t  a l l  times. 

l m s  that the  program executes 

LemM 2: The value of X is always the same as the i n i t i a l  value. 

Proof: t r i v i a l ,  s ince  there are no steps i n  the program which assign to  X. 

LpmM 3: SaRT halts. 

P r o o f :  Suppose not. In  t h i s  case, the set of times t where the value of 
RESULT decreases fran time t to  time t + 1 has no upper bound (else a t  saw 
point control  would leave the loop a t  the second conditional). This f a c t  can 
be expressed as a first-order statement using the  history function for RESULT 
(call it FRESULT) as follows: "for a l l  tims t there e x i s t s  a tine t '  such 
that t < t '  and FRESULT(t' + 1 )  < FRE"LT( t ' ) . ' '  Humere, the negation of this 
statement is a f i rs t -order  statemmt which is implied by the f i r s t  cropping 
function axiom, a contradiction. 

LemM 4: After the  i n i t i a l  assignment to RESULT, the value of RESULT is always 
>= 0 and <= x ++ 1. 

P m f :  The proof is by induction on t im ( i .e  induction on the number of s teps  
tha t  have been executed). Imnediately a f t e r  the i n i t i a l  assignment to RESULT, 
RESULT = X ++ 1 so c e r t a i n l y  RESULT <=  X ++ 1. W e  must therefore establish 
that 0 < =  x ++ 1 .  

Since X and 1 a r e  f i n i t e ,  X + 1 is f i n i t e  and SO by the error a i m ,  
X ++ 1 = CR(X + 1 )  == X + 1 .  1 is not an inf ini tes imal ,  and X is non-negative, 
so X + 1 is a t  least distance 1 frcm 0. Since rounding only introduces a n  
in f in i tes imal  error, a d  the distance between X + 1 an3 0 is not 
inf ini tes imal ,  X ++ 1 cannot be 0. 

To complete the induction, w e  must  show that a t  every step i n  execution, i f  
0 < =  RESULT < =  X ++ 1 is true before the step,  then i t  is h e  a f t e r .  For 
execution steps which a r e  not executions of the assignment statement ins ide  
t h e  low, this is t r i v i a l ,  s i n e  no other statemcnt chancjes the value of 
RESULT. Suppose a cjiven s t e p  is a n  execution of the assignment statement 
i n s i d e  the loop. F i r s t  of a l l ,  t h i s  ~ n s  that control rmst lave passed 
throught the preceding condi t ioml ,  so the next value of RESULT must be less 
than the  p rev ims  value, so i f  RESULT is <=  X ++ 1 before the assignment then 
the  same is t rue  af ter .  S e c o d ,  as shown i n  L a m  2 ,  i n  order for  control to 
b v e  reached t h i s  s t a t a n t  a t  a l l ,  RESULT must be non-zero, so it is s t r i c t l y  
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positive. The value of X is m-negat ive .  Therefore, s ince CX Of a 
non-negative number is non-negative, (RESULT ++ (X//RESULT))//2 N S t  be 
non-negative. This canpletes the inducticn. 

5 :  RESULT is always f i n i t e .  

Prclof: S i n e  0 and X ++ 1 are f i n i t e  ard RESULT is always between them, RESULT 
is also f i n i t e .  

When SCBT terminates, RESULT == r o o t ( i n i t i a 1  value of X I .  

mf: We w i l l  denote the value of RESULT a t  termination by R. The proof 
breaks into three cases: 

Case: R ** R = X. By Lermra 5 ,  R is f i n i t e  so by the error axiom, 
R * R == R ** R = X = i n i t i a l  value of X and the conclusion follows by 
0. 

Case 2: R ** R < X. Claim: R * R < X. I f  not, then R * R >= X, so by the 
mnton ic i ty  of CR, R ** R = CR(R * R) <=  CR(X) = X, a contradiction. The 
i n i t i a l  value of RESULT has square > X, so the assignment statement inside the 
loop must have been executed a t  least once before termination, Therefore, 
there e x i s t s  a previcus value of RESULT, call it RP, such that 
R = (RP ++ (X//RP))//2 <.W and RP ** RP > X. By the same reasoning as a h v e ,  
the seoord staten-ent implies tha t  RP * RP > X. Therefore o < X/RP < RP SO X/RP 
is finite, so (RP ++ (X//RP))//2 == (Rp + (X/RP))/Z. But the l e f t  s i d e  is less 
than r o o t ( x ) ,  while the r i g h t  s ide is greater  than r m t ( x )  by property of 
(ideal)  Newton's method. When two numbers w h i c h  d i f f e r  by an inf ini tes imal  
are on e i t h e r  s ide of a fixed nurrber, they each d i f f e r  f r an  that fixed number 
by an infinitesimal.  

0 
This establish the conclusion. 

use 3: R ** R > X. In this case, the prcgram mst have terminated because 
R <= ( R  ++ (X//R))//2. The assumption of the case implies t h a t  R * R X as 
above, so 0 < X/R < R so X/R is f i n i t e ,  so (R ++ (X//R))//2 == (R + (X/R))/2. 
The left s ide  is >=  R, while  the right side is < R by property of ( i d e a l )  
Newton's methcd. Therefore, R - ( ( R  + (X/R))/2) is i n f i n i t e s h 1 .  
Rearranging algeht-aically, we get (R*R - X)/(2*R*R) is infinitesimal.  The 
denomimtor is f i n i t e ,  so the numerator must be infinitesimal.  The conclusion 
follaws frcm LmQm 0. 

8 The Asymptotic Internretation 

What does ver i f i ca t ion  of a rri2thcnutical program executing over a non-standard 
&el of the rmls tell u s  a b u t  actual execution m a standard machine? This 
question is s j n i l a r  to the question " w h a t  does a proof i n  non-standard 
analysis  involving inf ini tes imals  s h w  abou t  a n a l y s i s  i n  the standard reds?" 
We w i l l  explain h e u r i s t i c a l l y  h m  non-standard analysis  proofs relate to 
stanriard analysis,  argue by analogy that the same r e l a t ion  holds between 
ve r i f i ca t ion  of non-standard execution and execution on a standard mchine.  

a d  
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It can (and has) been proved that the analogy is a c t u a l l y  valid, bu t  the proof 
is k y d  the scope of this paper. 

Consider t h e  non-standard a n a l y s i s  proof tha t  the d e r i v a t i v e  of t h e  xn2 
f u n c t i a n  is 2*x. It g ~ e s  as follows: take an a r b i t r a r y  i n f i n i t e s i m l  i and 
axnpute ( ( x  + 11-2 - x A 2 ) / i .  The r e s u l t  is 2*x + i. n u s ,  the va lue  of the 
d i f f e r e n c e  quotient far any in f in i t e s ima l  is only  in f in i t e s i rna l ly  d i f f e r e n t  
fm 2*x. This is a c t u a l l y  a proof that t h e  standard xn2 func t ion  has 
derivative 2*x i n  t h e  usua l  sense,  although it takes  sane mathematical logic 
to wove the connection. 

What does it mean to say that the  d e r i v a t i v e  of xn2 is 2*x i n  standard 
ana lys i s?  It means that the l i m i t  of the expression ( x  + h1-2 - x n 2 ) / h  as h 
goes to 0 is 2*x. Thus, a non-standard a n a l y s i s  proof about numbers being 
in f in i t e s i rna l ly  d i f f e r e n t  e s t a b l i s h e s  a standard f a c t  a b u t  behavior of an 
express ion  as a c e r t a i n  quan t i ty  g e t s  smaller and smaller. 

The same r e l a t i o n  holds between ncn-stardard and stardard execution. Our 
proof that i f  x is non-negative and f i n i t e  then SQRT(x) == r o o t ( x )  actually 
establishes t h a t  i f  w e  run SQRT on a sequence of machines whose CR is more and 
ny>re Prec i se ,  the output of SQRT(x) w i l l  converge to r o o t ( x ) .  More gene ra l ly ,  
i f  w e  have any real-valued i d e a l  function f and a program F and we can prnve 
i n  t h e  non-standard formalism that f o r  a l l  f i n i t e  x i n  t h e  donain of f ,  
F ( x )  == f ( x )  then this w i l l  e s t a b l i s h  that i f  w e  run F on a sequence of more 
and mre p r e c i s e  machines, the output of F ( x )  w i l l  converge to f ( x ) .  To put 
it another way! ye can ob ta in  any degree of prec is ion  i n  F ( x )  by ccmputing 
F ( x )  on a s u f f i c i e n t l y  precise mchine .  

0 
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